SYBASE

TECHWAVE

SYMPOSIUM 2009

SQL Anywhere Application
Development Best Practices

Glenn Paulley

Director, Engineering

Sybase iAnywhere
http://iablog.sybase.com/paulley

Goals of this presentation

* To help you develop applications that are
e robust,
* well designed,
e have good performance, and
e can scale with your database and number of users

* But we won’t have time to discuss
e User interface design
 Benchmarking and scalability testing
e Physical database design
* And lots of other appdev issues

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

An invitation to YOU

 |f you have an application development tip, whether it be
server-related, APl related, sync related, or whatever:

e Email it to me:

— paulley@sybase.com

e Or post a tip to the newsgroup
— sybase.public.sglanywhere.general

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Contents

e General considerations:
e Schema design tips
e Application development tips
e Some technical details concerning:

e |solation levels

e Cursor support in SQL Anywhere

XL TECHWAVE

SYMPOSIUM 2009

When should you think about

performance and scalability?

e During the design and planning stages
e Capacity planning
* Improving performance for deployed databases

Earlier is better!

SYBASE

XL TECHWAVE

- \ SYMPOSIUM 2009

Common areas for performance problems

Physical database organization
e Database file characteristics
* Indexing considerations

Schema design

Server characteristics
e CPU, disk activity
Network characteristics
e |nsufficient bandwith
* Latency

Appllcatlon design
Inefficient client-server communication
e Query complexity
e Trigger design
e Locking
e Workstation processing (CPU, disk)

XL TECHWAVE

SYMPOSIUM 2009

Schema Design

SYBASE

XL TECHWAVE

- \ SYMPOSIUM 2009

Schema design

Define your tables
 Normalize your data
e Entity/Relationship (ER) modeling
Define appropriate primary keys for all tables

e Helps in replication environments (reduces amount of data in the forward
transaction log file)

Define appropriate foreign key relationships

* FKrelationships are needed for the query optimizer to generate efficient
join strategies

Define appropriate indexes
* Don't need to create indexes for PKs or FKs
e Don't over-do it ! Only define ones that are useful
e SQL Anywhere permits customization of FK indexes

o Column order, sortedness
e Can use the Index Consultant to get indexing recommendations
SYBASE
X¢TECHWAVE

SYMPOSIUM 2009

Schema design: primary keys

e Data administration issues:

Ensure your application has complete control over key assignment and
usage

Usually a very bad idea to update a primary key (especially in a
replication environment)

o Don’t use phone numbers, SSN/SIN numbers, or other external identifiers
as primary keys

It is exceedingly difficult to “hide” primary keys from users (or your
customers)

Key formats are very difficult to change after deployment

XL TECHWAVE

SYMPOSIUM 2009

Schema design: primary key generation

e Common problem: large, composite primary keys that are
difficult to search efficiently
e Both retrieval and update performance can suffer

o Require multiple predicates to search for a single row

o Group By, Order By operations require multiple columns at the expense of
computation speed
o Indexes require multiple columns, increase index fanout

e Consider surrogate primary keys; change existing keys into unique
constraints or secondary indexes
e Choose the underlying data type carefully
 Double or float, because they are imprecise, are not good choices

XL TECHWAVE

SYMPOSIUM 2009

Schema design: primary key generation

* Integer representation is the most efficient, for both storage
and indexing

e More efficient that DECIMAL

* Permits the use of autoincrement PK column; hence the server does
all the work, eliminating the need for sophisticated key generation
within the application

e ROT: autoincrement scales very well; useful in many situations; highly
recommended for synchronization

e Global autoincrement can generate unique PK values in a replicated
system (also in UltralLite!)

e But....

XL TECHWAVE

SYMPOSIUM 2009

Schema design: autoincrement PKs

e Some disadvantages of autoincrement:
e Often wish to differentiate keys of different business objects
 May desire randomized key generation for some applications
e Alphanumeric values can aid in data consistency during data entry
e Autoincrement cannot support self-checking identifiers

 Think about these tradeoffs when deciding on identifier data
types

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Self-checking identifiers

e Add additional letter(s) (or number(s)) to an identifier to serve
as ‘check’ digits
e Example: Canadian social insurance numbers
o 8 digits plus check digit

o Federal government publishes the check digit algorithm so that financial
services companies can validate SIN numbers as necessary

o Algorithm prevents the transposition of any two digits from being a valid
number

e (Can do this for alphanumeric identifiers as well
e GUIDs are unique, but they are cumbersome and not self-
checking

XL TECHWAVE

SYMPOSIUM 2009

Other variations

e American Express credit card numbers

e Account number is separate from card number
o Individuals may have multiple cards, supplementary cards
e Card number is first ten numbers
o Extra five digits after the account number is the account suffix
o Suffix is altered in case of a lost card; base card number remains the same

e Canadian postal codes
» Different variation: rather than being self-checking, they are difficult
to type because of their format (e.g. N2L 6R2)
o Eliminate transposition errors

o Dramatically reduces incorrectly-addressed mail for the Canadian post
office

XL TECHWAVE

SYMPOSIUM 2009

Advantages of non-integer key

formats

e Can differentiate between key business objects simply by key
format

e (Can take advantage of the format when dealing with external parties,
particularly over the phone

e (Can use AAA-999 for one type of object, 999-AAA for another, 999-
AAA-999 for another, etc.

e If using letters, refrain from using vowels so as not to form obvious
(potentially naughty) words

e Can differentiate between invalid keys and unknown keys

e (Can make a difference in customer service situations

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Schema design: PK generation — manual

e How can we generate these identifiers?
e Manually assign key ranges

e Cumbersome, but can work in some business environments

e Often prone to data entry errors

o consider self-checking or alphanumeric identifiers to reduce data entry
problems

— Example: Canadian postal codes
» e.g. N2L 6R2

Do we really want to number customers starting at
0000000017

XL TECHWAVE

SYMPOSIUM 2009

Schema design: PK generation — key table

* Create a separate “key generation” table, with one row per
business object

 To add a new key:
o Initiate a new connection
o Compute the next key using the existing one as its basis
o Update the table, COMMIT immediately

e Several disadvantages: requires additional connection, logging,
locking, possible contention

e However: avoid designs that serialize transactions

e Such designs will not scale

XL TECHWAVE

SYMPOSIUM 2009

Schema design: PK generation — key pools

e Create a separate, permanent table (the pool) of potential
identifiers for each business object

e Each transaction DELETEs a key from this table, and uses it in
the INSERT of the actual object

 On ROLLBACK, identifier is released back into the pool

e Re-populating the pool once (nearly)-exhausted can be done using a
trigger, or an event

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Physical schema design issues

e For high performance, physical column order may be
important
e ROT: place frequently-accessed attributes at the beginning of a row

e Control how much space a large value is inlined in a row by using the
INLINE and PREFIX specification for a string column definition

 The column order of composite foreign key indexes does not
have to match the primary key

 Use PCTFREE to mitigate internal fragmentation

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Physical schema design: foreign keys

* Foreign keys are essential to the optimization of complex
gueries

Join selectivity and cardinality estimation is much more accurate when
foreign key constraints are present

e Also enable a variety of query rewrite optimizations

Moving to Jasper may warrant some analysis of FK and secondary
indexes; may wish to take advantage of new index key flexibility

e But tradeoff using declarative referential integrity

Downside is the maintenance cost for indexes that are not utilized in
query processing

o Index sharing can reduce this maintenance overhead by eliminating some
physical indexes

In rare situations, consider eliminating some Rl and check constraints

SYBASE

once application is fully tested X TECHWAVE

SYMPOSIUM 2009

Physical schema design: Entity-type

hierarchies

e ETH: a business object with multiple subtypes, for example:
* Insurance clients: policy owners, payors, insureds, beneficiaries
* Investments: stocks, mutual funds, term deposits, cash, bonds

e Can be a very useful data abstraction

e ETH implementation is perhaps the most difficult of schema
design choices
 There are no right answers, only tradeoffs

e Fully-normalized solutions may be cumbersome, and may involve
multiple joins for each access

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Physical schema design: Entity-type

hierarchies

e Design alternatives:

* Single physical table, different applicable attributes to each subtype in
each row

o Subtype identifier stored with each row, usually must be verified with a
predicate in each and every query

— Can use views that already have this condition builtin
o Any projection of the table will include attributes inapplicable to all
subtypes, hence lots of NULLs
o Declaring referential integrity constraints can be more difficult
— May have two or more targets for the same FK

— May need to tradeoff the ability for two or more subtypes to share
the same foreign key, which may compromise UPDATE processing

XL TECHWAVE

SYMPOSIUM 2009

Physical schema design: Entity-type

hierarchies

e Design alternatives:

e Multiple physical tables, one per subtype
o Queries involving only one subtype can be exact
— No need for additional predicates, projection operations
o Key generation is more difficult should uniqueness be required across all

subtypes
o Queries that require multiple subtypes will need UNION operations

o Joins involving two or more subtypes will require OUTER JOINs
— Will restrict potential processing strategies

XL TECHWAVE

SYMPOSIUM 2009

Client-server application performance

e |t's all about reducing LATENCY

e Two things to remember:
 There are no right answers, only tradeoffs
e All processors wait at the same speed

SYBASE

XL TECHWAVE

- \ SYMPOSIUM 2009

Sources of latency

e Server-side latencies

 Network latency
 Time it takes to perform a round trip over the wire; can use DBPING to
estimate
 |Inefficient client-server interactions

* Too many round trips from the application

o Not all round trips are due to application API calls; some are sent/received
as part of the underlying wire protocols

e Too much (or too little data) sent over the wire
 Repeated requests for the same data
e Re-PREPARE of similar or identical statements instead of reusing them

XL TECHWAVE

SYMPOSIUM 2009

Latency within the server

e Whenever processing of a request is interrupted, increased
latency can result

e Examples:
o Latency inherent to a query’s execution plan

— For example, using user-defined functions (UDFs) or sub-selects in a
SELECT list

o Blocking due to lock contention

— Controlled through application design and the choice of isolation
levels

o Blocking due to contention for internal concurrency control mechanisms
on shared server resources

XL TECHWAVE

SYMPOSIUM 2009

Execution plan latency

* Any interruption to the flow of tuples through a query

processing operator will increase the computation’s elapsed
time; for example:

* A nested-loop join constantly interrupts the retrieval of rows from
both tables

e Evaluating a subquery for every row of a scan can be extraordinarily
expensive

o The SQL Anywhere server goes to great lengths to mitigate subquery
evaluation through memoization and query rewriting

e Retrieving data from pages in the extension page arena interrupts
retrieval of base row segments

XL TECHWAVE

SYMPOSIUM 2009

Execution plan latency

e How you write a SQL statement does matter

Watch for join conditions involving user-defined functions,
expressions, or type conversion

User defined functions that have queries in them tie the hands of the
optimizer and can be inefficient

Consider the use of WINDOW functions, rather than nested correlated
subqueries, to avoid slow, iterative subquery evaluation

Only FETCH and reference necessary tables and columns

XL TECHWAVE

SYMPOSIUM 2009

Execution plan latency

e Simplify the query’s syntax if at all possible

Select list aliases are useful to identify common subexpressions
(including subqueries)

o e.g.Select (X+10)/2 as quotient
Eliminate unnecessary predicates, DISTINCT processing, joins, etc.
Don't replace LEFT OUTER JOINs with a subselect in the SELECT list
o Subselects cannot be rewritten by the optimizer

o LEFT OUTER JOINs can be executed in a variety of ways; subselects impose
nested-iteration semantics

Using user-defined functions (UDFs) in a query can kill query
performance

o Use them when you need to; but understand the tradeoffs

XL TECHWAVE

SYMPOSIUM 2009

Window functions

 Permit another opportunity to perform GROUP BY on an
intermediate result within the same query specification

e Permits all sorts of complex queries that would otherwise require
multiple queries and/or temporary tables to hold intermediate results

e See the whitepaper on http://ianywhere.com/developer

e Evaluation of a query specification’s clauses is

* FROM - WHERE - GROUP BY - HAVING - WINDOW - DISTINCT -
ORDER BY

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Using WINDOW functions

e Original correlated SQL query:

Select o.1d, o.order _date, p.*
From sales order o, sales order _items s, product p
Where o.1d = s.i1d and s.prod 1d = p.id
and p.quantity < (Select max(s2.quantity)
From sales order items s2
Where s2.prod 1d = p.i1d)
Order by p.i1d, o.1id

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Using WINDOW functions

e Rewritten query using a WINDOW function:

Select order gty.i1d, o.order _date, p.*
From (Select s.i1d, s.prod 1d,
Max(s.quantity) Over (Partition by s.prod id
Order by s.prod 1d) as max (¢
From sales order _i1tems s) as order _gty,
product p, sales order o
Where p.id = prod 1d and o.1d = order_gty.id
and p.quantity < max_(Q
Order by p.i1d, o.1id

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Isolation levels

 |solation levels only affect behavior of read requests from
other connections/transactions; writes always cause locks

* |solation levels for read requests:

e 0 (default) - no locking; a latch ensures that the entire row is
consistent when retrieved from the disk page

e 1,2-lock rows in the query’s result, but with level 1 the lock is held
only while the cursor is on that row

 3-lock every row read and every insertion point crossed during query
execution

e Snapshot isolation — writers don’t block readers, achieved by
maintaining copies of modified rows

e Addition/removal of a foreign key row requires a read lock on

the primary row X/ TECHWAVE

SYMPOSIUM 2009

Snapshot isolation support

* Provides read-consistency in the face of concurrent writes
from other transactions (e.g. writers do not block readers)

e Enabled by a global database option, allow_snapshot_isolation

* Three new transaction isolation levels:

e “snapshot” — cleanest semantics, transaction sees a consistent view of
the database as of transaction start (the time the first row was
accessed)

e “statement-snapshot” —requires less resources, however each
statement sees a consistent state of the database but at different
times

* “readonly-statement-snapshot” — like statement-snapshot, but only
for queries; update statements execute at the isolation level specified
by the UPDATABLE_STATEMENT _ISOLATION option (default is 0)

XL TECHWAVE

SYMPOSIUM 2009

Snapshot isolation support

e Usage is not free

e Old copies of rows are maintained in a “row version store” (part of the
database’s temporary dbspace) for as long as necessary to ensure
consistency for any transaction

e Old copies are cleaned up by the database cleaner process
* Indexes have a mix of “old” and “current” values
o Can affect the performance of both sequential and index scans
e Setting the isolation level:
* set option isolation_level = ‘snapshot’
e set option isolation_level = ‘statement_snapshot’
e set option isolation_level = ‘readonly_statement_snapshot’

e Or within an ODBC application, use
e SA SQL TXN_SNAPSHOT
e SA SQL_TXN_STATEMENT SNAPSHOT
e SA_SQL_TXN_READONLY_STATEMENT SNAPSHOT
X¢TECHWAVE

SYMPOSIUM 2009

Snapshot isolation support

e Update conflicts are still possible; update statements use locks
just like all other isolation levels
e JIsolation levels can be mixed (but not recommended)

e Database property VersionStorePages contains the number of pages in
the temp file devoted to copies of old rows

o BLOB values do not reside in the temp file, but remain in the main
database file and are reference counted

 Some restrictions on DDL when snapshot transactions are in progress
(ALTER TABLE, etc.)

XL TECHWAVE

SYMPOSIUM 2009

Isolation levels: recommendations

e Use the isolation level that offers your application the best
trade-off of consistency with concurrency
* NB. nothing is guaranteed at level 0 (“dirty read”)

e For isolation level 3, ensure the server can exploit indexes to
limit the amount of locking performed
 The server’s optimizer will try VERY hard to avoid sequential scans at
isolation level 3
 |f you must use multiple isolation levels within a transaction

e Specify ISOLATION LEVEL on a cursor basis instead of modifying the
option setting

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Execution plan latency: Cursors

e ESQL cursor types:

e no scroll, dynamic scroll (default), scroll, sensitive, insensitive

 ODBC cursor types

e static, dynamic, keyset, mixed, forward-only (default)

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Cursor semantics

e Cursor semantics are dependent on:
e Membership sensitivity
e Value sensitivity
e Scrollability (forward only or scrollable)
e Updatability (read-only or updateable)

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Cursors — membership sensitivity

e Membership sensitivity:

Insensitive: result rows are fixed at open; no changes after result set is
computed

Repeatable: result rows will not change once fetched

Sensitive: result rows will change with respect to concurrent inserts,
deletes, and updates

Asensitive: result rows may or may not change depending on update
activity and chosen plan

XL TECHWAVE

SYMPOSIUM 2009

Cursors — some definitions

e Value-sensitivity:
* Insensitive: data values will not change once the row has been fetched
e Sensitive: data values will change with respect to concurrent updates

* Asensitive: data values may or may not change depending on update
activity and chosen plan

XL TECHWAVE

SYMPOSIUM 2009

Cursor combinations

Row Membership

Asensitive Sensitive Insensitive

A ODBC forward-only, n/a n/a

ESQL dynamic
Values | S n/a ODBC dynamic, ODBC keyset,
ESQL sensitive ESQL scroll
| n/a n/a ODBC static,
ESQL insensitive

Cursor type can be altered by server to be more restrictive than what was
requested

XL TECHWAVE

SYMPOSIUM 2009

Network latency and performance

e Latency: time it takes for a packet to be received at a different
machine once sent

e Throughput: number of bits (bytes) that can be transferred in a
given period of time

e LAN: typically 1ms (perhaps less) latency, at least 1MB/sec
throughput

 WAN: 5-500 ms latency, 4-200KB/sec throughput

e These are ballpark estimates

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Reducing network latency

* |Increase the database server’s packet size

e Default in Version 11 has increased from 1460 to 7300; even larger
sizes can be beneficial for large result sets

e Can improve the performance of large FETCHes and multi-row
fetches, or BLOB operations (both retrieval and insertion)

e Use the CommBufferSize connection parameter

e Alter the packet size only for connections that would benefit from a
larger packet size.

XL TECHWAVE

SYMPOSIUM 2009

Reducing network latency

e Consider altering the ReceiveBufferSize and SendBufferSize
TCP/IP parameters

* Preallocate the amount of memory used by the TCP/IP protocol stack
to receive and send packets over the wire

e Defaults for these values are machine-dependent (OS, driver, card
manufacturer)

e Settings of 65K thru 258K are useful for experimentation

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Improving network throughput

e Communication compression may improve throughput
between client and server over a modem or WAN:

Enable using Compress=YES in client connection string, or —pc server
command line switch
Packets are compressed before encryption

Compressed data can be less than 10% of original size, but depends
completely on data and the application

Consider increasing packet size to achieve greater compression and
less number of packets

Compression requires additional ~46K per connection

You must analyze your application's performance and verify results

« Compression requires additional CPU; on LANs, compression costs may
outweigh savings in bandwidth

XL TECHWAVE

SYMPOSIUM 2009

Mitigating network latency

 Make client-server communication more efficient by reducing
the number of requests to the server
e Utilize wide fetches or wide inserts from your application
 Make use of PREFETCHing for large result sets

e Locally cache information in your application, rather than re-SELECTing
it from the server

e Combine a set of statements into a batch, or embed the statements
within a stored procedure so that only one CALL statement needs to

be sent from the application

XL TECHWAVE

SYMPOSIUM 2009

Mitigating network latency

 Make client-server communication more efficient by reducing
the number of requests to the server

e PREPARE/DESCRIBE once during initialization (or on first use)

o New in 10.0.1 — client statement caching — hides DROP/PREPARE
sequences for identical SQL statements

o Requires both 10.0.1 or newer client and server software
* Bind columns whenever possible
o use SQLBindCol() instead of SQLGetData()
* Avoid COMMITing after every statement
o This is the default behavior for both JDBC and ODBC
o Every COMMIT is a CHECKPOINT if there is no transaction log

XL TECHWAVE

SYMPOSIUM 2009

Mitigating network latency: prefetch

e Prefetch is designed to reduce communication in a client-server
environment by transferring sets of rows to the client in advance of a
FETCH request

e Prefetch is ON by default

* To disable outright: use the DisableMultiRowFetch connection parameter
or set the Prefetch option to OFF

e Prefetch is turned off on cursors declared with sensitive value semantics

 New in Version 11: adaptive prefetching

* Number of rows prefetched increases or decreases depending on
application behaviour

e Maximum number of rows that will be prefetched is 1000

* Also controlled by number of rows the application can FETCH in one
elapsed second

XL TECHWAVE

SYMPOSIUM 2009

Mitigating network latency: prefetch

e Adaptive prefetching is enabled for cursors for which all of the

following are true:

e ODBC and OLE DB: FORWARD-ONLY, READ-ONLY (default) cursor types;
ESQL: DYNAMIC SCROLL (default), NO SCROLL and INSENSITIVE cursor
types; all ADO.Net cursors

e only FETCH NEXT operations are done (no absolute, relative or
backwards fetching)

e the application does not change the host variable type between
fetches and does not use GET DATA to get column data in chunks (but
using _one_ GET DATA to get the value is OK)

e |n ESQL, use BLOCK n to limit the number of rows prefetched
for each FETCH request
e IfnisO, prefetch is disabled

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Mitigating network latency: prefetch

e Connection parameters: PreFetchRows and PreFetchBuffer

e can specify a per-connection prefetch row limit and a per-process

prefetch buffer size

e Prefetch may decrease performance if:

Application requires fewer rows than the prefetched amount

Application performs FETCH ABSOLUTE, backwards FETCH, or scrolls
randomly through the rowset

At isolation levels greater than 1, prefetch may introduce additional
lock contention

XL TECHWAVE

SYMPOSIUM 2009

Mitigating network latency: Wide

fetches/inserts

e For relatively large result sets, use wide fetches
e Each API call obtains several rows; explicitly set by the application
- Prefetching may or may not also occur

 Number of rows wide fetched is configurable for each interface,
including ODBC and JDBC

 Beware of differences in the underlying wire protocol that affect the
implementation (i.e. JConnect)
e With wide (multi-row) inserts:
e Supported by ESQL, ODBC, JDBC
e Consider LOAD TABLE where appropriate

e COMMIT at regular intervals to reduce lock contention, limit size of
rollback log

XL TECHWAVE

SYMPOSIUM 2009

Improving application efficiency

e Use the cursor type appropriate to the application’s
requirements to permit the use of lower isolation levels and
reduce unnecessary locking

e Use SQLSetStmtOption() to set cursor attributes
e SQL _CONCURRENCY to read only
e SQL CURSOR_TYPE to dynamic or forward-only

e Use the BLOCKING option (coupled with BLOCKING_TIMEOUT
option) to specify whether or not an application blocks on a
locking conflict, or receives an error

e Avoid DDL in applications (including TRUNCATE TABLE) to avoid
implicit COMMITs or CHECKPOINTSs

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Improving application efficiency

e Remember to drop statements at termination - de-allocate
statements with SQLFreeStmt()

e When a cursor is READ ONLY, declare it as such

 Some semantic optimizations are disabled for updateable cursors,
such as join elimination, which can greatly simplify the original request

* Enables adaptive PREFETCHing of the result set if also declared
FORWARD ONLY for certain interfaces (eg ODBC)

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Improving application efficiency

e Watch for nested-loop joins within your application
e OPEN CURSOR FOO FOR SELECT ...

e FETCH FROM FOO INTO ...
o OPEN CURSOR BAR FOR SELECT ...
o FETCH FROM BARINTO ...

e Alternatively: reconstruct the set of nested queries with a
single LEFT OUTER JOIN

* Precise construction depends on application behaviour

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

Improving application efficiency

e Use OPEN ... WITH HOLD only where appropriate

e All locks (except on the current row) are released upon COMMIT; no
guarantees about the state of the other rows
e Semantics are unclear if ROLLBACK was issued

o Contents of the cursor is undefined upon ROLLBACK

o Consider setting the option ANSI_CLOSE_CURSORS_ON_ROLLBACK to
force the closure of all cursors on a ROLLBACK statement

XL TECHWAVE

SYMPOSIUM 2009

Improving application efficiency

e Estimating result set size

* Avoid doing so if at all possible
o Results will not be consistent in the face of concurrent updates
e At OPEN, SQLCA (sqglerrd[2]) contains an estimate of the result set size
from the optimizer
o Use SQLRowCount() in ODBC

o If positive, estimate is accurate at the time the query was executed (i.e.
single table scan)

o If negative, estimate is from the optimizer

XL TECHWAVE

SYMPOSIUM 2009

Improving application efficiency

e Estimating result set size
e Use the ROW_COUNTS option to return an accurate result

(0]

(0]

For DYNAMIC cursors, query is executed twice
Result may still change due to concurrent updates

e Consider SCROLL or INSENSITIVE cursors instead

(0]

(0]

(0]

Result is computed only once
INSENSITIVE: result set size is fixed at OPEN

SCROLL: perform a FETCH ABSOLUTE n where n is “large enough” to force
materialization of the entire result

sqglerrd[2] contains (n — result set size)

XL TECHWAVE

SYMPOSIUM 2009

Conclusions

* |n addition to tuning the server, considerable performance
gains can be made by reducing latency within SQL statements,
within the application, and over the network

SYBASE

XL TECHWAVE

SYMPOSIUM 2009

