
SQL 502
Adding MobiLink Synchronization to an Existing Database

Reg Domaratzki (rdomarat@ianywhere.com)
International and Sustaining Engineering Group
iAnywhere Solutions, Waterloo, Ontario, Canada

Outline

Introduction
Limitations and Assumptions
Challenges
Consolidating Data for Reporting Purposes
Distributing Data to Multiple Locations

Introduction

Purpose
 The goal of this talk is to show how you can add Mobilink

synchronization to an existing stand-alone application without
making any changes to the schema of the existing database
 You may want to do this so that you can consolidated all the

data from your stand alone databases into a single location so
that you can perform some reporting on the data
 You may also want to share information between the stand

alone versions of your application, so that everyone has
access to everyone else’s data

Introduction

Target Audience
 Existing Partners
 You currently have an existing stand alone application that you

would like to add synchronization to
 The time involved in having to re-work your database schema and

possibly your application doesn’t fit into your existing schedules
 Current End Users
 You’ve developed an in-house application using ASA that you

would like to synchronize
 Third party vendor is unwilling to add synchronization capabilities

but is willing to let you do it yourself

Outline

Introduction
Limitations and Assumptions
 Runtime engine
 Database version
 DBA or RESOURCE authority required
 Primary Key modification
 Truncation of transaction log
 No DBA at Remote Site
 Cannot Modify Existing Database Objects

Challenges
Consolidating Data for Reporting Purposes
Distributing Data to Multiple Locations

Limitations and Assumptions

Limitations
 Runtime engine
 The runtime version of the engine cannot use a transaction log,

so replication and synchronization are not possible using the
freely distributed runtime engine

 Database version
 ASA was not available as a remote database for MobiLink until

version 7.0.0
 DBA or RESOURCE authority required
 You will need access to a database user with DBA or

RESOURCE authority in order to create the objects in the
database needed for synchronization

Limitations and Assumptions

Limitations
 Application CANNOT modify primary keys
 A synchronization system cannot properly handle the modification

of primary keys at the remote site
 If the application modifies primary keys, it should not be used in a

synchronizing or replicating environment
 Truncation of transaction log
 If the application starts the database engine using the –m switch,

or if database events or any external event truncates the
transaction log, then it cannot be used in a synchronizing or
replicating environment

Limitations and Assumptions

Assumptions
 No DBA at Remote Site
 No DBA should be needed at the remote site to apply any of the

changes or run synchronization
 No process outlined should involve and end-users doing anything

more than running a setup program, or possibly double-clicking
on an icon that run a batch file

 Some expertise will be needed to setup the system, particularly if
you are merging existing databases into a single consolidated
database

Limitations and Assumptions

Assumptions
 Cannot Modify Existing Database Objects
 Application often has hard coded SQL statements that assume

that the column list has not been changed
 select * from table
 insert into table values (…)

 No changes will be made to existing database objects at the
remote

 No triggers will be added to the remote database

Outline

Introduction
Limitations and Assumptions
Challenges
 Deployment
 Primary Key Uniqueness
 Trigger Actions and Cascading Referential Integrity
 Conflict Resolution
 distributed Deletes

Consolidating Data for Reporting Purposes
Distributing Data to Multiple Locations

Challenges

Deployment
 It is unlikely that the dbmlsync executable and the dbtools DLL

were deployed when ASA was first installed
 A few additional files will likely be needed to be added to the ASA

install at the remote sites
 A minimum of three SQL commands will need to be executed

against the remote database
 If you already have a process in place for schema upgrades, this

should not be difficult
 dbmlsync will need to be run at the remote site
 It could be set up to run as a service in the background
 A OS level event could run dbmlsync periodically
 An icon could be added to the user’s desktop

Challenges

Primary Key Uniqueness
 In a distributed environment, you need to create a way to

ensure that a primary key you enter at a remote site will not
conflict with a primary key entered at a different site
 Common ways of ensuring primary key uniqueness include
 GLOBAL AUTOINCREMENT defaults on columns
 Composite primary keys that include a unique database identifier
 Primary key pools

 It is unlikely that any of the above techniques were used when
the stand alone application was developed
 Ensuring primary key uniqueness is the main focus of the

remainder of this talk

Challenges

Trigger Actions and Cascading Referential Integrity
 If the database performs actions as a results of operations

performed by the end-user, it’s important that these actions be
reflected in the synchronization process
 This is handled by dbmlsync by using the SendTriggers

extended option

Challenges

Conflict Resolution
 As soon as people are given access to the same data, they

will invariably modify each other’s data
 You need the ability to handle update conflicts that occur using

any business rule you choose
 Conflicts in MobiLink are detected and resolved at the

consolidated database, so no changes need to be made at the
remote to handle conflicts

Challenges

Distributed Deletes
 If your application allows for deletes to occur on parent

records, it is possible for the following situation to occur
 Remote user 1 deletes a parent record and synchronizes
 Remote user 2 insert a child record that references the parent that

was just deleted at another remote
 When Remote user 2 synchronizes, a foreign key violation will

occur at the consolidated database
 This is best handled using logical deletes
 Deletes that comes from a remote are not really deleted, but

simply marked as deleted
 Although the deletes will still be sent down to all the remotes, no

foreign key violation will occur, and an administrator still has the
ability to un-delete the row

Consolidating Data for Reporting

Introduction
Limitations and Assumptions
Challenges
Consolidating Data for Reporting Purposes
 Sample Schema
 Solution Overview
 Changes Needed at the Remote
 Ensuring Primary Key Uniqueness at the Consolidated
 Getting the Initial Data to the Consolidated

Distributing Data to Multiple Locations

Consolidating Data for Reporting
Sample Schema

Consolidating Data for Reporting
Sample Schema

There are things in the schema added to try and
make this process more difficult
 All primary keys are DEFAULT AUTOINCREMENT
 Triggers maintain the rows in the IssueHistory table
 Support representatives are defined as database users stored

in the SYSUSERPERM table, which cannot be added to a
publication
 There is cascading delete referential integrity defined between

the Issue table and it’s child tables

Consolidating Data for Reporting
Solution Overview

On the Consolidated
 Add an extra column in each table to define which remote the

row came from, and make this column part of the primary key
of the table
 Modify the foreign key definitions to include both columns

 Define a begin_synchronization script that sets a global
variable to store the name of the remote user that is
synchronizing
 Remove trigger definitions
 Remove column and table constraints
 Create a user table to store SYSUSERPERM information from

the remotes
 Write upload synchronization scripts for all tables

Consolidating Data for Reporting
Solution Overview

On the remote
 Create a publication that includes all tables
 Create a synchronization user
 Create a synchronization subscription
 Create a user table to duplicate SYS.SYSUSERPERM table

Consolidating Data for Reporting
Changes Needed at the Remote

One of the assumptions made is that there is no
DBA at the remote site, so any changes that need
to be made MUST be simple
 In order to allow the remote database to synchronize, three

SQL commands need to be executed against the database
 CREATE PUBLICATION
 CREATE SYNCHRONIZATION USER
 CREATE SYNCHRONIZATION SUBSCRIPTION

 These command require DBA or RESOURCE authority to
execute on the remote database
 For this example, we’ll also need to create another user table

and procedure to copy the contents of the SYSUSERPERM

Consolidating Data for Reporting
Changes Needed at the Remote

create table MySYSUSERPERM (
user_id unsigned int NOT NULL,
user_name char(128) NOT NULL,
password binary(36),
resourceauth char(1) NOT NULL,
dbaauth char(1) NOT NULL,
scheduleauth char(1) NOT NULL,
publishauth char(1) NOT NULL,
remotedbaauth char(1) NOT NULL,
user_group char(1) NOT NULL,
remarks long varchar,
PRIMARY KEY (user_id)

);

Consolidating Data for Reporting
Changes Needed at the Remote

create procedure sp_hook_dbmlsync_begin ()
begin

insert into MySYSUSERPERM
on existing update
select *
from SYSUSERPERM

where user_id > 100;
delete

from MySYSUSERPERM
where user_id not in
(select user_id

from SYSUSERPERM
where user_id > 100);

end;

Consolidating Data for Reporting
Changes Needed at the Remote

create publication p1 (
table SupportPlan,
table Customer,
table Contact,
table Status,
table Issue,
table IssueNotes,
table IssueHistory,
table MySYSUSERPERM

);

create synchronization user
DISTINCT_USER_NAME;

create synchronization
subscription
to p1
for DISTINCT_USER_NAME
type TCPIP
address 'host=MLServer‘
options
SendTriggers='ON',
LockTables='ON',
UploadOnly='ON',
ScriptVersion='sql502_1';

Consolidating Data for Reporting
Primary Key Uniqueness at the Consolidated

A composite primary key on the consolidated is the
easiest way to ensure primary key uniqueness

The only issue with this is that the MobiLink user
name is not passed into the upload_insert,
upload_update or update_delete synchronization
events, so the value must be stored during the
begin_synchronization event so it can be
referenced later

Consolidating Data for Reporting
Primary Key Uniqueness at the Consolidated

Remote Table Definition

create table SupportPlan (
spid integer
default autoincrement,

spName varchar(30)
NOT NULL,

MaxContacts integer
NOT NULL DEFAULT 1,

primary key(spid)
);

Consolidated Table Definition

create table SupportPlan (
spid integer

default autoincrement,
mlUser varchar(128),
spName varchar(30)

NOT NULL,
MaxContacts integer

NOT NULL DEFAULT 1,
primary key(spid, mlUser)

);

Consolidating Data for Reporting
Primary Key Uniqueness at the Consolidated

Remote Table Definition

create table Customer (
cuid integer default autoincrement,
cuName varchar(60) NOT NULL,
spid integer default 1 references SupportPlan,
IssuesLeft integer NULL,
PlanExpires timestamp NULL,
primary key(cuid)

);

Consolidating Data for Reporting
Primary Key Uniqueness at the Consolidated

Consolidated Table Definition
create table Customer (

cuid integer default autoincrement,
mlUser varchar(128),
cuName varchar(60) NOT NULL,
spid integer,
IssuesLeft integer NULL,
PlanExpires timestamp NULL,
primary key(cuid, mlUser),
foreign key (spid, mlUser)
references SupportPlan (spid, mlUser)

);

Consolidating Data for Reporting
Primary Key Uniqueness at the Consolidated

call ml_add_connection_script(
'sql502_1',
'begin_connection',
'create variable @mlu varchar(128)'

);

call ml_add_connection_script(
'sql502_1',
'begin_synchronization',
'set @mlu = ?'

);

Consolidating Data for Reporting
Primary Key Uniqueness at the Consolidated

call ml_add_table_script(
'sql502_1', 'SupportPlan', 'upload_insert',
'insert into SupportPlan(spid, mlUser, spName, MaxContacts)
values (?, @mlu, ?, ?)'

);

call ml_add_table_script(
'sql502_1', 'SupportPlan', 'upload_update',
'update SupportPlan set spName = ?, MaxContacts = ?
where spid = ? and mlUser = @mlu'

);

call ml_add_table_script(
'sql502_1', 'SupportPlan', 'upload_delete',
'delete from SupportPlan where spid = ? and mlUser = @mlu'

);

Consolidating Data for Reporting
Getting the Initial Data to the Consolidated

The data that exists in the remote database at the
time that the synchronization subscription is
created will never be sent to the consolidated
using dbmlsync
 Dbmlsync scans operations from the transaction log, so there

is no guarantee that the transaction log will still exist when you
add the synchronization subscription
 All changes made to the database AFTER the synchronization

subscription is created will be sent to the MobiLink server
 The data that is to be added to the consolidated needs to be

the data that existed at the remote at the time the
synchronization subscription was created

Consolidating Data for Reporting
Getting the Initial Data to the Consolidated

The following process on the remote will ensure that
the proper data is added to the consolidated

1. Stop the remote database
2. Take a copy of the remote database (transaction log not

needed)
3. Run the script to create the synchronization subscription
4. Send the copy of the remote database from Step #2 to the

consolidated site
5. Restart the remote database
6. Start running dbmlsync
 Note that dbmlsync will FAIL until the administrators add your

MobiLink user into the consolidated database

Consolidating Data for Reporting
Getting the Initial Data to the Consolidated

The following process at the consolidated will
ensure that the data is added properly

1. Insert the data from the remote into the consolidated, using
the unique MobiLink user name as the value in the mlUser
column of the composite primary key

2. Add the MobiLink user so that synchronizations can now
begin for this user

When the remote user synchronizes for the first
time, all the changes since the synchronization
subscription was created will be sent to
MobiLink

Consolidating Data for Reporting
Getting the Initial Data to the Consolidated

The data can be added to the consolidated database
using proxy tables from the remote

create server mlcons class 'asaodbc' using 'cons_dsn';
create existing table cons_SupportPlan at

‘mlcons..DBA.SupportPlan';
insert into cons_SupportPlan
select spid, DISTINCT_USER_NAME, spName, MaxContacts
from SupportPlan;

drop table cons_SupportPlan;
drop server mlcons;

Distributing Data to Multiple Locations

Introduction
Limitations and Assumptions
Challenges
Consolidating Data for Reporting Purposes
Distributing Data to Multiple Locations
 Sample Schema
 Solution Overview
 Changes Needed at the Remote
 Ensure Primary Keys Uniqueness at the Consolidated AND the Remotes
 Writing Synchronization Scripts
 Conflict Resolution
 Getting the Initial Data to the Consolidated
 Adding new MobiLink users

Distributing Data to Multiple Locations
Sample Schema

The schema for the second part of the talk will be a
little simpler, because the focus will be on the
synchronization scripts in the consolidated to
ensure primary key uniqueness across the entire
system

There will only be two tables on the remote, with a
foreign key relationship between the two tables

Distributing Data to Multiple Locations
Sample Schema

Table Definitions at the Remote

CREATE TABLE DBA.Admin (
admin_id integer NOT NULL DEFAULT autoincrement,
data varchar(30) NULL ,
PRIMARY KEY (admin_id)

);

CREATE TABLE DBA.Child (
child_id integer NOT NULL DEFAULT autoincrement,
admin_id integer NOT NULL REFERENCES DBA.Admin,
data varchar(30) NULL,
PRIMARY KEY (child_id),

)

Distributing Data to Multiple Locations
Solution Overview

 Similar to the first sample, an “mlUser” column will be added to
each table in the consolidated, and will be included in the
primary key of the table
 For each table, we will create another table in the

Consolidated database to map a given composite primary key
on the consolidated to a non-composite primary key for each
remote
 A last modified column will be added to each table in the

consolidated so only modified rows are downloaded
 A timestamp column will be added to each table to logically

delete rows

Distributing Data to Multiple Locations
Changes Needed at the Remote

Similar to the first sample, only three commands
need to be executed at the remote

1. CREATE PUBLICATION
2. CREATE SYNCHRONIZATION USER
3. CREATE SYNCHRONIZATION SUBSRIPTION

Distributing Data to Multiple Locations
Primary Key Uniqueness

The structure of the tables in the consolidated
database will be different than the structure on the
remote
 A last_modified column will be added to each table so that

only changed rows will be downloaded to the remotes
 A delete_time column will be added to each table to track

when a row was deleted
 The row will never be deleted from the consolidated, but we’ll use

logical deletes to propagate the deletes to other remotes
 The primary key will be changed to a composite primary key

that includes the MobiLink user name
 Foreign keys will now have to reference the composite primary

keys on the parent tables as well

Distributing Data to Multiple Locations
Primary Key Uniqueness

Consolidated Table Definition - Admin

create table Admin (
admin_id integer default autoincrement ,
mlUser varchar(128),
data varchar(30),
last_modified timestamp default timestamp,
delete_time timestamp default NULL,
primary key (admin_id, mlUser)

);

Distributing Data to Multiple Locations
Primary Key Uniqueness

Consolidated Table Definition – Child
create table Child (

child_id integer default autoincrement ,
mlUser varchar(128),
admin_id integer ,
admin_mlUser varchar(128) ,
data varchar(30),
last_modified timestamp default timestamp,
delete_time timestamp default NULL,
primary key (child_id, mlUser),
foreign key (admin_id, admin_mlUser)
references Admin (admin_id, mlUser)

);

Distributing Data to Multiple Locations
Primary Key Uniqueness

The primary keys on the remotes will still be an
integer, but we’ll be adding rows from other remote
sites that may have the same primary key value
 On the consolidated, the primary key will include the MobiLink

user to ensure uniqueness, but we can’t add a column to the
table on the remote

Another table on the consolidated will map the
composite primary key on the consolidated to a
distinct primary key value for each remote
 For the remainder of the talk I’ll refer to this extra table as the

“Pkey” table, and use “base” table to refer to the table that
stores the actual data values

Distributing Data to Multiple Locations
Primary Key Uniqueness

create table AdminPkey (
admin_id integer NOT NULL,
mlUser varchar(128) NOT NULL,
remoteMlUser varchar(128) NOT NULL,
remoteAdmin_id integer NULL,
primary key (admin_id, mlUser, remoteMlUser),
foreign key (admin_id, mlUser)
references Admin (admin_id, mlUser) on delete cascade

);

Distributing Data to Multiple Locations
Primary Key Uniqueness

create table ChildPkey (
child_id integer NOT NULL,
mlUser varchar(128) NOT NULL,
remoteMlUser varchar(128) NOT NULL,
remoteChild_id integer NULL,
primary key (child_id, mlUser, remoteMlUser),
foreign key (child_id, mlUser)
references Child (child_id, mlUser) on delete cascade

);

Distributing Data to Multiple Locations
Primary Key Uniqueness

admin_id Data
1 rem1_row1
2 rem2_row1

admin_id Data
1 rem2_row1
2 rem1_row1

rem1 – Admin rem2 - Admin

admin_id mlUser Data
1 rem1 rem1_row1
1 rem2 rem2_row1

admin_id mlUser remoteMlUser remoteAdmin_id
1 rem1 rem1 1
1 rem1 rem2 2
1 rem2 rem2 1
1 rem2 rem1 2

cons - Admin

cons - AdminPkey

Distributing Data to Multiple Locations
Primary Key Uniqueness

Populating the Pkey table
 An insert trigger on the base table will manage inserting rows

into the Pkey table for that table
 We can only fully populate a single row in the table, since the

primary key for the insert on the base table contains the pkey
on the remote and MobiLink user name for the remote
 The trigger will also insert a row for every MobiLink user

defined in the consolidated, but put in a NULL value for the
primary key that will be used at the remote
 This NULL value will be changed at a later time

Distributing Data to Multiple Locations
Primary Key Uniqueness

create trigger ai_Admin after insert on Admin
referencing new as nr for each row
begin

insert into AdminPkey values (nr.admin_id, nr.mlUser,
nr.mlUser, nr.admin_id);

insert into AdminPkey
select nr.admin_id, nr.mlUser, "name", NULL
from ml_user

where "name" not in (nr.mlUser);

end;

Distributing Data to Multiple Locations
Primary Key Uniqueness

Populating the Pkey table
 We can’t populate the remoteAdmin_id column for all the

remotes when a new row is inserted, because we don’t know
what new primary key values have been used since the last
synchronization at the remote site
 When a user synchronizes, we will need to update all the

NULL values in the Pkey tables after the upload is applied, but
before the download stream is generated
 The prepare_for_download event fires at the perfect time
 Also note that the download is only generated if the upload

successfully committed
 We can guarantee that no new rows are added to the remote

database while we generate these new primary keys at the
consolidated if the LockTables extended option is set to ‘ON’

Distributing Data to Multiple Locations
Getting the Initial Data to the Consolidated

create procedure sql502_part2_pfd
(@ldt timestamp, @sp_mlu varchar(128))

begin
declare cAdmin cursor for
select admin_id, mlUser from AdminPkey
where remoteMlUser=@sp_mlu and remoteAdmin_id is NULL;

declare @cid integer;
declare @cmlUser varchar(128);
declare @maxid integer;
select max(remoteAdmin_id)+1 into @maxid
from AdminPkey where remoteMlUser=@sp_mlu;

if(@maxid is NULL) then set @maxid=1; end if;
open cAdmin;
fetch first cAdmin into @cid, @cmlUser;
while (sqlcode = 0) loop
update AdminPkey set remoteAdmin_id=@maxid
where admin_id=@cid and mlUser=@cmlUser and remoteMlUser=@sp_mlu;
set @maxid=@maxid + 1;
fetch next cAdmin into @cid, @cmlUser;

end loop;
close cAdmin;

end;

Distributing Data to Multiple Locations
Primary Key Uniqueness

Populating the Pkey table
 The process described on the Admin table in the preceding

slides needs to be applied to the Child table as well
 There is nothing different (as far as populating the Pkey table)

that needs to be done because the table is a child in a foreign key
relationship

 The prepare_for_download stored procedure that you write
would update all the Pkey tables in the database
 You could also code this in the begin_download table script for

each table, but the fact that a COMMIT occurs after the
prepare_for_download event fires means that the work will not
have to be done twice if the download transaction is rolled back

Distributing Data to Multiple Locations
Writing Synchronization Scripts

All of the scripts that you write will need to do joins
between the base and Pkey tables to figure out how the
primary key value that is being passed up from the
remote maps to the row as it is stored in the base table
on the consolidated
 You’ll start by defining a variable in the begin_synchronization

event to keep track of the remote user that is synchronizing

call ml_add_connection_script(
'sql502_part2', 'begin_connection',
'create variable @mlu varchar(128)'

);
call ml_add_connection_script(
'sql502_part2', 'begin_synchronization', 'set @mlu = ?'

);

Distributing Data to Multiple Locations
Writing Synchronization Scripts

The upload_insert event is simple to code
Remember that there is an insert trigger on the
table that will be adding rows into the AdminPkey
table

call ml_add_table_script(
'sql502_part2', 'Admin', 'upload_insert',
'insert into Admin values (?,@mlu,?,DEFAULT,DEFAULT)'

);

Distributing Data to Multiple Locations
Writing Synchronization Scripts

The upload_insert for the Child table needs to
figure out how to map the admin_id value from the
remote to an (admin_id, admin_mluser)
combination on the consolidated
 Because of the foreign key defined on the remote, we can

guarantee that the insert on the parent record was uploaded
first

We need to define a stored procedure to do the
insert only because the order that we use the
parameters in the insert statement does not match
the order that is used to pass in the parameters
 We want to use the primary key value last, but it is passed in

first

Distributing Data to Multiple Locations
Writing Synchronization Scripts

create procedure ui_Child (in @child_id integer,
in @admin_id integer,
in @data varchar(30))

begin
insert into Child
(child_id, mlUser, admin_id, admin_mlUser, data)

select @child_id, @mlu,
AdminPkey.admin_id, AdminPkey.mlUser, @data

from AdminPkey
where AdminPkey.remoteAdmin_id = @admin_id
and AdminPkey.remoteMlUser = @mlu;

end;

call ml_add_table_script(
'sql502_part2', 'Child', 'upload_insert',
'call ui_Child(?, ?, ?)'

);

Distributing Data to Multiple Locations
Writing Synchronization Scripts

The upload_update event for the Admin table
needs to join to the AdminPkey table, and the
upload_update event for the Child table needs to
join to the ChildPkey and AdminPkey table

call ml_add_table_script(
'sql502_part2', 'Admin', 'upload_update',
'update Admin

set Admin.data = ?
from Admin key join AdminPkey

where AdminPkey.remoteMlUser = @mlu
and AdminPkey.remoteAdmin_id = ?'

);

Distributing Data to Multiple Locations
Writing Synchronization Scripts

create procedure uu_Child
(in @admin_id integer, in @data varchar(30), in @child_id integer)

begin
declare @cons_admin_id integer;
declare @cons_admin_mluser varchar(128);

select admin_id, mlUser into @cons_admin_id, @cons_admin_mluser
from AdminPkey
where remoteMlUser = @mlu and remoteAdmin_id = @admin_id;

update Child
set admin_id = @cons_admin_id ,

admin_mlUser = @cons_admin_mluser , data = @data
from Child key join ChildPkey
where ChildPkey.remoteChild_id = @child_id
and ChildPkey.remoteMlUser = @mlu;

end;

call ml_add_table_script(
'sql502_part2', 'Child', 'upload_update',
'call uu_Child (?, ?, ?)'

);

Distributing Data to Multiple Locations
Writing Synchronization Scripts

When a delete is uploaded to consolidated
database, we are not going to delete the row, but
instead will logically delete the row by modifying
the delete_time column from a NULL value (which
indicates that the row has not been deleted) to the
time that the row was deleted
 Note that by using logical deletes, you are assuming that no

other application is connecting to your database and executing
delete statements
 The paranoid amongst the crowd should consider adding a

delete trigger that raises an error if a delete if ever performed
on a base table

Distributing Data to Multiple Locations
Writing Synchronization Scripts

call ml_add_table_script(
'sql502_part2', 'Admin', 'upload_delete',
'update Admin

set delete_time = CURRENT TIMESTAMP
from Admin key join AdminPkey

where AdminPkey.remoteMlUser = @mlu
and AdminPkey.remoteAdmin_id = ?'

);
call ml_add_table_script(
'sql502_part2', 'Child', 'upload_delete',
'update Child

set delete_time = CURRENT TIMESTAMP
from Child key join ChildPkey

where ChildPkey.remoteMlUser = @mlu
and ChildPkey.remoteChild_id = ?'

);

Distributing Data to Multiple Locations
Writing Synchronization Scripts

The download_cursor for the Admin table will need
to join the Admin table and AdminPkey table to
ensure that the proper primary key values are
passed down to the remotes
 We will also need to remove rows from the result set that have

been logically deleted

The download_cursor for the Child table will need
to do a three way join between Child, ChildPkey
and AdminPkey
 We will also need to remove rows from the result set that have

been logically deleted

Distributing Data to Multiple Locations
Writing Synchronization Scripts

call ml_add_table_script(
'sql502_part2', 'Admin', 'download_cursor',
'select AdminPkey.remoteAdmin_id, Admin.data

from Admin key join AdminPkey
where Admin.last_modified >= ?
and AdminPkey.remoteMlUser = ?
and Admin.delete_time is NULL'

);

call ml_add_table_script(
'sql502_part2', 'Child', 'download_cursor',
'select ChildPkey.remoteChild_id, AdminPkey.remoteAdmin_id,

Child.data
from Child key join ChildPkey, AdminPkey
where Child.last_modified >= ?
and ChildPkey.remoteMlUser = @mlu
and Child.admin_id = AdminPkey.admin_id
and Child.admin_mluser = AdminPkey.mlUser
and AdminPkey.remoteMlUser = @mlu
and Child.delete_time is NULL'

);

Distributing Data to Multiple Locations
Writing Synchronization Scripts

Writing Synchronization Scripts
 Most of the work for tracking deletes has been done in the

upload_delete event, when we set the delete_time column in
the table to the time that the row was logically deleted
 The download_delete_cursors for tables need only join the

base and Pkey tables and download the primary key values
for that remote for rows that have been logically deleted since
the last synchronization

Distributing Data to Multiple Locations
Writing Synchronization Scripts

call ml_add_table_script(
'sql502_part2', 'Admin', 'download_delete_cursor',
'select AdminPkey.remoteAdmin_id

from Admin key join AdminPkey
where Admin.delete_time >= ?
and AdminPkey.remoteMlUser = ?'

);

call ml_add_table_script(
'sql502_part2', 'Child', 'download_delete_cursor',
'select ChildPkey.remoteChild_id

from Child key join ChildPkey
where Child.delete_time >= ?
and ChildPkey.remoteMlUser = ?'

);

Distributing Data to Multiple Locations
Conflict Resolution

Once you start sharing data, you’ll might need to
write conflict resolution scripts if the default of
“last one in wins” is not suited to your business
needs
The conflict resolution is slightly trickier since we’ll
need to map the primary key values from the
remote to the actual values on the consolidated to
determine if a conflict has occurred
First, we’ll create global temporary tables to store
the before, after and current values of the row, as
they exist on the consolidated database

Distributing Data to Multiple Locations
Conflict Resolution

create global temporary table AdminConflict (
admin_id integer,
mlUser varchar(128),
state varchar(1) check (@col in ('o', 'n', 'c')),
data varchar(30),
primary key (admin_id, mlUser, state)

);

create global temporary table ChildConflict (
child_id integer,
mlUser varchar(128),
state varchar(1) check (@col in ('o', 'n', 'c')),
admin_id integer,
admin_mluser varchar(128),
data varchar(30),
primary key (child_id, mlUser, state)

);

Distributing Data to Multiple Locations
Conflict Resolution

The upload_fetch event will need to gather what
the consolidated database believes that row on the
remote looks like right now to compare with the old
row values that are passed up in the upload stream

A two table join is needed for the Admin table, and
a three table join is needed for the Child Table

Distributing Data to Multiple Locations
Conflict Resolution

call ml_add_table_script(
'sql502_part2', 'Admin', 'upload_fetch',
'select AdminPkey.remoteAdmin_id, Admin.data

from Admin key join AdminPkey
where AdminPkey.remoteMlUser = @mlu
and AdminPkey.remoteAdmin_id = ?'

);

call ml_add_table_script(
'sql502_part2', 'Child', 'upload_fetch',
'select ChildPkey.remoteChild_id,

AdminPkey.remoteAdmin_id, Child.data
from Child key join ChildPkey, AdminPkey

where ChildPkey.remoteMlUser = @mlu
and ChildPkey.remoteChild_id = ?
and Child.admin_id = AdminPkey.admin_id
and Child.admin_mlUser = AdminPkey.mluser
and AdminPkey.remoteMlUser = @mlu'

);

Distributing Data to Multiple Locations
Conflict Resolution

The upload_new_row_insert and upload_old_row_insert table
events will be used to populate the global temporary table with
the old, new and current values of the data as it exists in the
consolidated database
 Stored procedures are used again only because the order that the

parameters are passed in does not match the order in which we are
using them

 The resolve_conflict stored procedures in this sample ensure that the
remote user that initially created the data will win all conflicts, and “first
one in” wins in all other situations

 The conflict resolution code for the Child table is very similar
 The upload_fetch event is provided, but the remaining scripts are left as an

exercise to the reader, but can be found in the attached samples

Distributing Data to Multiple Locations
Conflict Resolution

create procedure uori_admin
(in @admin_id integer, in @data varchar(30))

begin
insert into AdminConflict
select AdminPkey.admin_id, AdminPkey.mlUser, 'o', @data
from Admin key join AdminPkey

where AdminPkey.remoteMlUser = @mlu
and AdminPkey.remoteAdmin_id = @admin_id;

end;

call ml_add_table_script(
'sql502_part2', 'Admin', 'upload_old_row_insert',
'call uori_admin (?, ?)'

);

Distributing Data to Multiple Locations
Conflict Resolution

create procedure unri_admin
(in @admin_id integer, in @data varchar(30))

begin
insert into AdminConflict
select AdminPkey.admin_id, AdminPkey.mlUser, 'n', @data
from Admin key join AdminPkey

where AdminPkey.remoteMlUser = @mlu
and AdminPkey.remoteAdmin_id = @admin_id;

insert into AdminConflict
select AdminPkey.admin_id, AdminPkey.mlUser, 'c', Admin.data

from Admin key join AdminPkey
where AdminPkey.remoteMlUser = @mlu
and AdminPkey.remoteAdmin_id = @admin_id;

end;

call ml_add_table_script(
'sql502_part2', 'Admin', 'upload_new_row_insert',
'call unri_admin(?, ?)'

);

Distributing Data to Multiple Locations
Conflict Resolution

create procedure resolve_conflict_admin ()
begin

declare c1 cursor for select admin_id, mlUser from AdminConflict group by admin_id, mlUser;
declare @cAdmin_id integer;
declare @cMlUser varchar(128);
declare @OldData varchar(30);
declare @NewData varchar(30);
declare @CurrentData varchar(30);

open c1;
fetch first c1 into @cAdmin_id, @cMlUser;
while (sqlcode = 0) loop

select data into @OldData from AdminConflict
where admin_id = @cAdmin_id and mlUser = @cMlUser and state = 'o';

select data into @NewData from AdminConflict
where admin_id = @cAdmin_id and mlUser = @cMlUser and state = 'n';

select data into @CurrentData from AdminConflict
where admin_id = @cAdmin_id and mlUser = @cMlUser and state = 'c';

-- Make sure "real" owner wins conflict
if(@cMlUser = @mlu) then

-- Current User is the "owner", they should win
update Admin set data = @NewData where admin_id = @cAdmin_id and mlUser = @cMlUser;

else
-- do nothing, first one in wins.

end if;
fetch next c1 into @cAdmin_id, @cMlUser;

end loop;
close c1;

end;

Distributing Data to Multiple Locations
Conflict Resolution

call ml_add_table_script(
'sql502_part2', 'Child', 'upload_fetch',
'select ChildPkey.remoteChild_id,

AdminPkey.remoteAdmin_id, Child.data
from Child key join ChildPkey, AdminPkey

where ChildPkey.remoteMlUser = @mlu
and ChildPkey.remoteChild_id = ?
and Child.admin_id = AdminPkey.admin_id
and Child.admin_mlUser = AdminPkey.mluser
and AdminPkey.remoteMlUser = @mlu'

);

Distributing Data to Multiple Locations
Getting the Initial Data to the Consolidated

Getting the initial data to the consolidated is
identical to the process that was followed in the
first section
 As long as the inserts on the base table you use through proxy

tables populate the mlUser column, the insert triggers on the
base table will ensure that the Pkey table is populated

Distributing Data to Multiple Locations
Adding New MobiLink Users

When a new MobiLink user is added to the system,
this will need to trigger inserts into the Pkey tables
so that the first time the user synchronizes, we can
download the rows that were created at the other
remote sites
 A trigger on the ml_user table can be used to take care of this

When a MobiLink user is removed from the system,
you could choose to also delete (logically) the rows
owned by this user

Distributing Data to Multiple Locations
Adding New MobiLink Users

create trigger ai_ml_user after insert on dbo.ml_user
referencing new as nr for each row
begin

insert into DBA.AdminPkey
select admin_id, mlUser, nr."name", NULL
from DBA.Admin;

insert into DBA.ChildPkey
select child_id, mlUser, nr."name", NULL
from DBA.Child;

end;

iAnywhere at TechWave 2005

MobiLink Usability Testing
• Be the first to check out the new “MobiLink Administration Tool” which

guides administrators through all aspects of the data synchronization
process using a simple set of wizards and graphical tools.

• Your feedback will provide valuable guidance in the overall direction of
this tool.

• Plus a special gift for all testers!
• Located in the Experts Area – Exhibit Hall

iAnywhere at TechWave 2005

Ask the iAnywhere Experts on the Technology Boardwalk (exhibit hall)
• Drop in during exhibit hall hours and have all your questions answered by our

technical experts!
• Appointments outside of exhibit hall hours are also available to speak one-on-one

with our Senior Engineers. Ask questions or get your yearly technical review – ask
us for details!

TechWave ToGo Channel
• TechWave ToGo, an AvantGo channel providing up-to-date information about

TechWave classes, events, maps and more –now available via your handheld
device!

• www.ianywhere.com/techwavetogo

iAnywhere Developer Community - A one-stop source for technical information!
Access to newsgroups,new betas and code samples
• Monthly technical newsletters
• Technical whitepapers,tips and online product documentation
• Current webcast,class,conference and seminar listings
• Excellent resources for commonly asked questions
• All available express bug fixes and patches
• Network with thousands of industry experts

http://www.ianywhere.com/developer/

SQL Anywhere ‘Jasper’ Release

Learn more about 'Jasper', the upcoming SQL Anywhere release, loaded
with features focused on:
• Enhanced data management including performance, data protection, and

developer productivity
• Innovative data movement including manageability, flexibility and

performance, and messaging

Attend the following sessions:
SQL Anywhere 'Jasper' New Feature Overview
Session SQL512 will be held Monday, August 22nd, 1:30pm

MobiLink 'Jasper' New Feature Overview
Session SQL515 will be held Wednesday, August 24th, 1:30pm

... and remember to look for sneak peeks in other sessions and morning
education courses!

Register for the Jasper Beta program:
www.ianywhere.com/jasper

	SQL 502�Adding MobiLink Synchronization to an Existing Database
	Outline
	Introduction
	Introduction
	Outline
	Limitations and Assumptions
	Limitations and Assumptions
	Limitations and Assumptions
	Limitations and Assumptions
	Outline
	Challenges
	Challenges
	Challenges
	Challenges
	Challenges
	Consolidating Data for Reporting
	Consolidating Data for Reporting�Sample Schema	
	Consolidating Data for Reporting�Sample Schema
	Consolidating Data for Reporting �Solution Overview
	Consolidating Data for Reporting �Solution Overview
	Consolidating Data for Reporting�Changes Needed at the Remote
	Consolidating Data for Reporting�Changes Needed at the Remote
	Consolidating Data for Reporting�Changes Needed at the Remote
	Consolidating Data for Reporting�Changes Needed at the Remote
	Consolidating Data for Reporting�Primary Key Uniqueness at the Consolidated
	Consolidating Data for Reporting�Primary Key Uniqueness at the Consolidated
	Consolidating Data for Reporting�Primary Key Uniqueness at the Consolidated
	Consolidating Data for Reporting�Primary Key Uniqueness at the Consolidated
	Consolidating Data for Reporting�Primary Key Uniqueness at the Consolidated
	Consolidating Data for Reporting�Primary Key Uniqueness at the Consolidated
	Consolidating Data for Reporting�Getting the Initial Data to the Consolidated
	Consolidating Data for Reporting�Getting the Initial Data to the Consolidated
	Consolidating Data for Reporting�Getting the Initial Data to the Consolidated
	Consolidating Data for Reporting�Getting the Initial Data to the Consolidated
	Distributing Data to Multiple Locations
	Distributing Data to Multiple Locations�Sample Schema
	Distributing Data to Multiple Locations�Sample Schema
	Distributing Data to Multiple Locations�Solution Overview
	Distributing Data to Multiple Locations�Changes Needed at the Remote
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Getting the Initial Data to the Consolidated
	Distributing Data to Multiple Locations�Primary Key Uniqueness
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Writing Synchronization Scripts
	Distributing Data to Multiple Locations�Conflict Resolution
	Distributing Data to Multiple Locations�Conflict Resolution
	Distributing Data to Multiple Locations�Conflict Resolution
	Distributing Data to Multiple Locations�Conflict Resolution
	Distributing Data to Multiple Locations�Conflict Resolution
	Distributing Data to Multiple Locations�Conflict Resolution
	Distributing Data to Multiple Locations�Conflict Resolution
	Distributing Data to Multiple Locations�Conflict Resolution
	Distributing Data to Multiple Locations�Conflict Resolution
	Distributing Data to Multiple Locations�Getting the Initial Data to the Consolidated
	Distributing Data to Multiple Locations�Adding New MobiLink Users
	Distributing Data to Multiple Locations�Adding New MobiLink Users
	iAnywhere at TechWave 2005
	iAnywhere at TechWave 2005
	SQL Anywhere ‘Jasper’ Release

