Searching for thermal radiation : 19 results found | RSS Feed for this search

2.51 Intermediate Heat and Mass Transfer (MIT) 2.51 Intermediate Heat and Mass Transfer (MIT)

Description

2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer. 2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer.Subjects

heat transfer | heat transfer | mass transfer | mass transfer | Unsteady heat conduction | Unsteady heat conduction | evaporation | evaporation | solar radiation | solar radiation | spectral radiation | spectral radiation | grey radiation networks | grey radiation networks | black bodies | black bodies | thermal radiation | thermal radiation | external configurations | external configurations | natural convection | natural convection | forced convection | forced convection | steady conduction in multidimensional configurations | steady conduction in multidimensional configurationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.51 Intermediate Heat and Mass Transfer (MIT) 2.51 Intermediate Heat and Mass Transfer (MIT)

Description

2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer. 2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer.Subjects

heat transfer | heat transfer | mass transfer | mass transfer | Unsteady heat conduction | Unsteady heat conduction | evaporation | evaporation | solar radiation | solar radiation | spectral radiation | spectral radiation | grey radiation networks | grey radiation networks | black bodies | black bodies | thermal radiation | thermal radiation | external configurations | external configurations | natural convection | natural convection | forced convection | forced convection | steady conduction in multidimensional configurations | steady conduction in multidimensional configurationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.58J Radiative Transfer (MIT) 2.58J Radiative Transfer (MIT)

Description

This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing. This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.Subjects

thermal radiation | thermal radiation | heat transfer | heat transfer | photon transfer | photon transfer | quantum modeling | quantum modeling | materials | materials | electromagnetic | electromagnetic | absorption | absorption | emitting media | emitting media | scattering | scattering | laser | laser | imaging | imaging | infrared | infrared | global warming | global warming | semiconductor manufacturing | semiconductor manufacturing | combustion | combustion | furnace | furnace | high temperature processing | high temperature processing | Drude | Drude | Lorenz | Lorenz | gas | gas | dielectric | dielectric | Monte Carlo | Monte Carlo | simulation | simulation | solar energy | solar energy | solar power | solar power | solar cell | solar cell | 2.58 | 2.58 | 10.74 | 10.74License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.044 Statistical Physics I (MIT) 8.044 Statistical Physics I (MIT)

Description

This course offers an introduction to probability, statistical mechanics, and thermodynamics. Numerous examples are used to illustrate a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices.This course is an elective subject in MIT’s undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges. This course offers an introduction to probability, statistical mechanics, and thermodynamics. Numerous examples are used to illustrate a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices.This course is an elective subject in MIT’s undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.Subjects

probability | probability | statistical mechanics | statistical mechanics | thermodynamics | thermodynamics | random variables | random variables | joint and conditional probability densities | joint and conditional probability densities | functions of a random variable | functions of a random variable | macroscopic variables | macroscopic variables | thermodynamic equilibrium | thermodynamic equilibrium | fundamental assumption of statistical mechanics | fundamental assumption of statistical mechanics | microcanonical and canonical ensembles | microcanonical and canonical ensembles | First | second | and third laws of thermodynamics | First | second | and third laws of thermodynamics | magnetism | magnetism | polyatomic gases | polyatomic gases | thermal radiation | thermal radiation | electrons in solids | electrons in solids | noise in electronic devices | noise in electronic devicesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.286 The Early Universe (MIT) 8.286 The Early Universe (MIT)

Description

Includes audio/video content: AV lectures. The Early Universe provides an introduction to modern cosmology. The first part of the course deals with the classical cosmology, and later part with modern particle physics and its recent impact on cosmology.For more about Professor Guth's work, listen to this interview from WBUR, Boston's National Public Radio news station. Includes audio/video content: AV lectures. The Early Universe provides an introduction to modern cosmology. The first part of the course deals with the classical cosmology, and later part with modern particle physics and its recent impact on cosmology.For more about Professor Guth's work, listen to this interview from WBUR, Boston's National Public Radio news station.Subjects

special relativity | special relativity | big-bang theory | big-bang theory | Doppler effect | Doppler effect | Newtonian cosmological models | Newtonian cosmological models | non-Euclidean spaces | non-Euclidean spaces | thermal radiation | thermal radiation | early history of the universe | early history of the universe | grand unified theories | grand unified theories | particle theory | particle theory | baryogenesis | baryogenesis | inflationary universe model | inflationary universe model | evolution of galactic structure | evolution of galactic structureLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.286 The Early Universe (MIT) 8.286 The Early Universe (MIT)

Description

The Early Universe provides an introduction to modern cosmology. The first half deals with the development of the big-bang theory from 1915 to 1980, and latter half with recent impact of particle theory. The Early Universe provides an introduction to modern cosmology. The first half deals with the development of the big-bang theory from 1915 to 1980, and latter half with recent impact of particle theory.Subjects

special relativity | special relativity | Doppler effect | Doppler effect | Newtonian cosmological models | Newtonian cosmological models | non-Euclidean spaces | non-Euclidean spaces | thermal radiation | thermal radiation | early history of the universe | early history of the universe | big-bang theory | big-bang theory | big-bang nucleosynthesis | big-bang nucleosynthesis | grand unified theories | grand unified theories | particle theory | particle theory | baryogenesis | baryogenesis | inflationary | inflationary | evolution of galactic structure | evolution of galactic structure | inflationary universe model | inflationary universe modelLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.044 Statistical Physics I (MIT) 8.044 Statistical Physics I (MIT)

Description

This course offers an introduction to probability, statistical mechanics, and thermodynamics. Numerous examples are used to illustrate a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices. This course offers an introduction to probability, statistical mechanics, and thermodynamics. Numerous examples are used to illustrate a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices.Subjects

probability | probability | statistical mechanics | statistical mechanics | thermodynamics | thermodynamics | random variables | random variables | joint and conditional probability densities | joint and conditional probability densities | functions of a random variable | functions of a random variable | macroscopic variables | macroscopic variables | thermodynamic equilibrium | thermodynamic equilibrium | fundamental assumption of statistical mechanics | fundamental assumption of statistical mechanics | microcanonical and canonical ensembles | microcanonical and canonical ensembles | First | First | second | second | and third laws of thermodynamics | and third laws of thermodynamics | magnetism | magnetism | polyatomic gases | polyatomic gases | hermal radiation | hermal radiation | thermal radiation | thermal radiation | electrons in solids | electrons in solids | and noise in electronic devices | and noise in electronic devices | First | second | and third laws of thermodynamics | First | second | and third laws of thermodynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.044 Statistical Physics I (MIT) 8.044 Statistical Physics I (MIT)

Description

Introduction to probability, statistical mechanics, and thermodynamics. Random variables, joint and conditional probability densities, and functions of a random variable. Concepts of macroscopic variables and thermodynamic equilibrium, fundamental assumption of statistical mechanics, microcanonical and canonical ensembles. First, second, and third laws of thermodynamics. Numerous examples illustrating a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices. Concurrent enrollment in 8.04, Quantum Physics I, is recommended. Introduction to probability, statistical mechanics, and thermodynamics. Random variables, joint and conditional probability densities, and functions of a random variable. Concepts of macroscopic variables and thermodynamic equilibrium, fundamental assumption of statistical mechanics, microcanonical and canonical ensembles. First, second, and third laws of thermodynamics. Numerous examples illustrating a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices. Concurrent enrollment in 8.04, Quantum Physics I, is recommended.Subjects

probability | probability | statistical mechanics | statistical mechanics | thermodynamics | thermodynamics | random variables | random variables | joint and conditional probability densities | joint and conditional probability densities | functions of a random variable | functions of a random variable | macroscopic variables | macroscopic variables | thermodynamic equilibrium | thermodynamic equilibrium | fundamental assumption of statistical mechanics | fundamental assumption of statistical mechanics | microcanonical and canonical ensembles | microcanonical and canonical ensembles | First | First | second | second | and third laws of thermodynamics | and third laws of thermodynamics | magnetism | magnetism | polyatomic gases | polyatomic gases | hermal radiation | hermal radiation | thermal radiation | thermal radiation | electrons in solids | electrons in solids | and noise in electronic devices | and noise in electronic devices | First | second | and third laws of thermodynamics | First | second | and third laws of thermodynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.044 Statistical Physics I (MIT) 8.044 Statistical Physics I (MIT)

Description

This course offers an introduction to probability, statistical mechanics, and thermodynamics. Numerous examples are used to illustrate a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices. This course offers an introduction to probability, statistical mechanics, and thermodynamics. Numerous examples are used to illustrate a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices.Subjects

probability | probability | statistical mechanics | statistical mechanics | thermodynamics | thermodynamics | random variables | random variables | joint and conditional probability densities | joint and conditional probability densities | functions of a random variable | functions of a random variable | macroscopic variables | macroscopic variables | thermodynamic equilibrium | thermodynamic equilibrium | fundamental assumption of statistical mechanics | fundamental assumption of statistical mechanics | microcanonical and canonical ensembles | microcanonical and canonical ensembles | First | First | second | second | and third laws of thermodynamics | and third laws of thermodynamics | magnetism | magnetism | polyatomic gases | polyatomic gases | hermal radiation | hermal radiation | thermal radiation | thermal radiation | electrons in solids | electrons in solids | and noise in electronic devices | and noise in electronic devices | First | second | and third laws of thermodynamics | First | second | and third laws of thermodynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.286 The Early Universe (MIT)

Description

The Early Universe provides an introduction to modern cosmology. The first half deals with the development of the big-bang theory from 1915 to 1980, and latter half with recent impact of particle theory.Subjects

special relativity | Doppler effect | Newtonian cosmological models | non-Euclidean spaces | thermal radiation | early history of the universe | big-bang theory | big-bang nucleosynthesis | grand unified theories | particle theory | baryogenesis | inflationary | evolution of galactic structure | inflationary universe modelLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.286 The Early Universe (MIT)

Description

The Early Universe provides an introduction to modern cosmology. The first half deals with the development of the big-bang theory from 1915 to 1980, and latter half with recent impact of particle theory.Subjects

special relativity | Doppler effect | Newtonian cosmological models | non-Euclidean spaces | thermal radiation | early history of the universe | big-bang theory | big-bang nucleosynthesis | grand unified theories | particle theory | baryogenesis | inflationary | evolution of galactic structure | inflationary universe modelLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.044 Statistical Physics I (MIT)

Description

This course offers an introduction to probability, statistical mechanics, and thermodynamics. Numerous examples are used to illustrate a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices.Subjects

probability | statistical mechanics | thermodynamics | random variables | joint and conditional probability densities | functions of a random variable | macroscopic variables | thermodynamic equilibrium | fundamental assumption of statistical mechanics | microcanonical and canonical ensembles | First | second | and third laws of thermodynamics | magnetism | polyatomic gases | hermal radiation | thermal radiation | electrons in solids | and noise in electronic devices | First | second | and third laws of thermodynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.51 Intermediate Heat and Mass Transfer (MIT)

Description

2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer.Subjects

heat transfer | mass transfer | Unsteady heat conduction | evaporation | solar radiation | spectral radiation | grey radiation networks | black bodies | thermal radiation | external configurations | natural convection | forced convection | steady conduction in multidimensional configurationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.044 Statistical Physics I (MIT)

Description

This course offers an introduction to probability, statistical mechanics, and thermodynamics. Numerous examples are used to illustrate a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices.Subjects

probability | statistical mechanics | thermodynamics | random variables | joint and conditional probability densities | functions of a random variable | macroscopic variables | thermodynamic equilibrium | fundamental assumption of statistical mechanics | microcanonical and canonical ensembles | First | second | and third laws of thermodynamics | magnetism | polyatomic gases | hermal radiation | thermal radiation | electrons in solids | and noise in electronic devices | First | second | and third laws of thermodynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.044 Statistical Physics I (MIT)

Description

Introduction to probability, statistical mechanics, and thermodynamics. Random variables, joint and conditional probability densities, and functions of a random variable. Concepts of macroscopic variables and thermodynamic equilibrium, fundamental assumption of statistical mechanics, microcanonical and canonical ensembles. First, second, and third laws of thermodynamics. Numerous examples illustrating a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices. Concurrent enrollment in 8.04, Quantum Physics I, is recommended.Subjects

probability | statistical mechanics | thermodynamics | random variables | joint and conditional probability densities | functions of a random variable | macroscopic variables | thermodynamic equilibrium | fundamental assumption of statistical mechanics | microcanonical and canonical ensembles | First | second | and third laws of thermodynamics | magnetism | polyatomic gases | hermal radiation | thermal radiation | electrons in solids | and noise in electronic devices | First | second | and third laws of thermodynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.51 Intermediate Heat and Mass Transfer (MIT)

Description

2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer.Subjects

heat transfer | mass transfer | Unsteady heat conduction | evaporation | solar radiation | spectral radiation | grey radiation networks | black bodies | thermal radiation | external configurations | natural convection | forced convection | steady conduction in multidimensional configurationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.58J Radiative Transfer (MIT)

Description

This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.Subjects

thermal radiation | heat transfer | photon transfer | quantum modeling | materials | electromagnetic | absorption | emitting media | scattering | laser | imaging | infrared | global warming | semiconductor manufacturing | combustion | furnace | high temperature processing | Drude | Lorenz | gas | dielectric | Monte Carlo | simulation | solar energy | solar power | solar cell | 2.58 | 10.74License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.286 The Early Universe (MIT)

Description

The Early Universe provides an introduction to modern cosmology. The first part of the course deals with the classical cosmology, and later part with modern particle physics and its recent impact on cosmology.For more about Professor Guth's work, listen to this interview from WBUR, Boston's National Public Radio news station.Subjects

special relativity | big-bang theory | Doppler effect | Newtonian cosmological models | non-Euclidean spaces | thermal radiation | early history of the universe | grand unified theories | particle theory | baryogenesis | inflationary universe model | evolution of galactic structureLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.044 Statistical Physics I (MIT)

Description

This course offers an introduction to probability, statistical mechanics, and thermodynamics. Numerous examples are used to illustrate a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices.This course is an elective subject in MIT’s undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.Subjects

probability | statistical mechanics | thermodynamics | random variables | joint and conditional probability densities | functions of a random variable | macroscopic variables | thermodynamic equilibrium | fundamental assumption of statistical mechanics | microcanonical and canonical ensembles | First | second | and third laws of thermodynamics | magnetism | polyatomic gases | thermal radiation | electrons in solids | noise in electronic devicesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata